Рейтинг

Оцените: 100% - 1 голосов

100%

Математика 5 класс

Упражнение 1663

Условие:

Угол АОВ развёрнутый, а ОС - луч. Найдите градусные меры углов АОС и СОВ, если:
а) градусная мера угла АОС втрое больше, чем градусная мера угла СОВ;
б) градусная мера угла АОС на 60° больше градусной меры угла СОВ;
в) градусная мера угла АОС в 4 раза меньше, чем градусная мера угла СОВ.

 

Ответ:

а) Пусть ∟COB = x°, тогда ∟AOC = 3x°.
Сумма ∟COB + ∟AOC = ∟AOB = (x + 3х)°.
Составим и решим уравнение:
х + 3х = 180 => х = 180 : 4 = 45° => ∟COB = 45°, ∟AОС = 3 • 45 = 135°.
б) Пусть ∟COB = х°, тогда ∟AOC = (x + 60)°.
Сумма ∟COB + ∟AOC = ∟AOB = (х + x + 60)0.
Составим и решим уравнение:
x + х + 30 = 180 => x = (180 - 60) : 2 = 60° => ∟COB = 60°, ∟AOC = 60 + 60 = 120°.
в) Пусть ∟AOC = х°, тогда ∟COB = 4х°.
Сумма ∟COB + ∟AOC = ∟AOB = (х + 4x)°.
Составим и решим уравнение:
х + 4х = 180 => x = 180 : 5° => x = 36°=> ∟AOC = 36°, ∟COB = 4 • 36 = 144°.

share with Whatsapp
share with Telegram
powered by social2s